SUBTRACTION: Y1

Read, write and interpret mathematical statements involving subtraction (-) and equals (=) signs ;
$14-3=11 \quad 9=16-7$
Solve missing number problems and recognise use of inverse e.g.
11- $\square=8 \quad \square=13-2 \quad 3=\square-\square$
Realise the effect of adding or subtracting 0
Establish addition and subtraction as related operations.
$19+1=20$ so $20-1=19$

Vocabulary

Understand the vocabulary related to subtraction.
subtraction, subtract, take away, minus, distance between, difference between, more than, minus, less than, equals = same as, most, least, pattern, odd, even, digit

Generalisations

- True or false? Subtraction makes numbers smaller
- When introduced to the equals sign, pupils should see it as signifying equality. They should become used to seeing it in different positions.

Understanding the operation and vocabulary

Number facts

Recall and use subtraction facts to 10 fluently e.g.
6 minus 38 subtract 24 less than 9

Know number pairs with a total of 20 and derive related subtraction facts e.g.
$20+0,20-1,20-2,20-3$...
Memorise and reason with number bonds to 10 and 20 in several forms
$9+7=16 ; \quad 16-7=9 ; 7=16-9 ; \quad 9=16-7$ etc.
$6-4=2$ so $16-4=12$

Mental methods and jottings

Subtract one-digit and two-digit numbers to 20, including zero, using apparatus including number lines.

Represent and use number bonds within 20
Partition a given number of objects (up to 20) into 2 groups e.g.

Partition 15 into 7 and 8,9 and $6 \ldots$....

Counting back

15-3 (by counting back 3 in ones; 14, 13, 12)
Progress to crossing the tens boundary

With jottings

15-6 (by counting back in ones or partitioning 6 to bridge the tens boundary; -5, -1)

Counting up

$9-6$ (by counting up from 6 to 9 in ones; 7, 8, 9)

With jottings

$19-14$ (by counting up from 14 to 19 in ones; $15,16,17$,
18, 19)

Understanding the operation and vocabulary

 https://www.ncetm.org.uk/resources/50640
CONCRETE

Use physical objects, counters, cubes etc to show how objects can be taken away.

Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones.
$13-4$

PICTORIAL

Cross out drawn objects to show what has been taken away.

$15-3=12$

Misconceptions

- Pupils struggle to interpret whether to add or subtract from the language used.
- Pupils often do not see difference as a representation of subtraction because take away is emphasised so much. They need to see subtraction represented in this way also to challenge this.
- The equals sign is not always correctly interpreted as 'has the same value as' by pupils who see it as 'the answer is'

Know doubles to at least 10 and use near doubles to add pairs of numbers

Using known facts and place value

$6-4=2$ so $16-4=12$

Using known doubles

Double 3 is 6 so $3+4$ is one more

Count back on a number line or number track

ABSTRACT
$8-2=6$
(NC- read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs)

SUBTRACTION: Y2

Understanding the operation and vocabulary

Understanding the operation

Understand subtraction as:

- taking away
- comparison (finding the difference)
- partitioning a set

Show that subtraction of one number from another cannot be done in any order
Recognise that 5-3 is different from 3-5
Recognise the inverse relationship between addition and subtraction

Write the related number sentences

$$
\begin{array}{llll}
5+2=7 & 2+5=7 & 7=5+2 & 7=2+5 \\
7-2=5 & 7-5=2 & 2=7-5 & 5=7-2
\end{array}
$$

Solve missing number problems e.g.
$27-\square=17 \quad \square=21-4 \quad 10=\square-\square$

Vocabulary

Understand the vocabulary related to subtraction
Also see Y1
subtraction, subtract, take away, difference, difference between, minus, tens, ones, partition, near multiple of 10, tens boundary, less than, one less, two less... ten less... one hundred less, more, one more, two more... ten more... one hundred more

Generalisation

Noticing what happens when you count back in tens (the digits in the ones column stay the same)
odd - odd = even; odd - even = odd; etc
Show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot

Number facts

Recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100 e.g.
15 subtract 84 less than $12 \quad 80$ minus 30
90 take 50
Know complements to the next multiple of 10 e.g.

$$
52+\square=60 \quad 52+\square=80
$$

Know pairs of multiples of 10 with a total of 100 and derive related subtraction facts e.g.
100-10, 100-20, 100-30 ...

Mental methods and jottings

Subtract numbers using concrete objects, pictorial representations, and mentally, including:

* a two-digit number and ones
* a two-digit number and tens
* two two-digit numbers

Counting back in ones, twos and tens

$57-20$ (by counting back in tens; 47, 37)

With jottings
57-23 (by partitioning the second number and counting back; -20, -3)

Counting up

31-28 (by counting up from 28 by bridging the tens boundary; $+2,+1$)

With jottings
65-47 (by counting up from 47 by bridging the tens boundary; $+3,+10,+5$)

Adjusting

35-9 (by subtracting 10 and adding 1)

Recording

https://www.ncetm.org.uk/resources/50640

CONCRETE

$10-6=$

Link to addition- use the part whole model to help explain the inverse between addition and subtraction.

If 10 is the whole and 6 is one of the parts. What is the other part?

Compare amounts and objects to find the difference.

Use cubes to build towers or make bars to find the difference

Use basic bar models with items to find the difference

$$
78-34
$$

Recognise and use the inverse relationship between addition and subtraction and use this to check calculations and missing number problems. This understanding could be supported by images such as this.

 $15+5=20$

Misconceptions

- Pupils struggle to interpret whether to add or subtract from the language used
- Pupils often do not see difference as a representation of subtraction because take away is emphasised so much. They need to see subtraction represented in this way also to challenge this.
- When subtracting, pupils will sometimes subtract the larger number from the smaller initially.
- When counting back, pupils may start counting using the start number itself rather than counting the next number.
- The equals sign is not always correctly interpreted as 'has the same value as' by pupils who may see it as 'the answer is'
- Pupils do not use place value when adding and subtracting - signs of this can be them counting repeatedly from 0 or failing to use models that group tens differently. They may need to use a wider range of representations to develop this idea more strongly - some pupils can do this when the model 'looks' like 10 but not when the visual link has gone.
- Pupils may not always understand that addition is commutative but subtraction is not.

With jottings

$35-19$ (by subtracting 20 and adding 1)

Using known facts and Place Value
 $57-4 \quad(7-4=3$ so $57-4=53)$

Estimating

check calculations by subtracting in a different way solve $16-9$ by $16-10+1$

Partitioning second number

partition numbers in different ways
$23=20+3$ and $23=10+13$ to support subtraction $57-23(-20,-3)$ then cross tens boundary: 42-17 (-10, -2, -5)

PICTORIAL

Use a pictorial representation of objects to show the part-partwhole model.

ABSTRACT

$$
34-13=
$$

\qquad

$$
-10-3
$$

$20 \quad 1$

$$
\begin{array}{cl}
42-15= & \text { We can't subtract the ones here so need to } \\
\text { partition differently. This relies on secure place } \\
42 & \text { value knowledge. }
\end{array}
$$

Now we can subtract the ones and then the tens

SUBTRACTION: Y3

hundreds, tens, ones, estimate, partition, recombine, difference, decrease, near multiple of 10 and 100, inverse, rounding, column subtraction, exchange

Generalisations

Noticing what happens to the digits when you count in tens and hundreds.
odd - odd = even etc (see Year 2)
Inverses and related facts - develop fluency in finding related addition and subtraction facts.
Develop the knowledge that the inverse relationship can be used as a checking method.

Misconceptions

- Pupils struggle to interpret whether to add or subtract from the language used.
- When adding/subtracting $1 \mathrm{~s}, 10$ s or 100 s mentally, pupils may 'change' the digit in the wrong column.
- When subtracting, pupils may subtract the larger number from the smaller initially.
- When performing columnar subtraction, pupils may exchange from the wrong column or fail to exchange altogether (instead just finding the difference between the digits in the column, even where the second one is greater than the first).
- Pupils may also fail to correctly record the exchange and thus not reduce the tens, for example, by one so that the answer is 10 too high.
- Pupils often do not see difference as a representation of subtraction because take away is emphasised so much. They need to see subtraction represented in this way also to challenge this.
- When working with addition and subtraction facts, pupils sometime realise there is a connection e.g. $3+4=7$ but then incorrectly rearrange this to make a false second fact e.g. $4+7=3$.
- This is particularly true with subtraction facts, where pupils struggle to place the numbers in a correct order.
- Some pupils may use the incorrect operation when checking and fail to realise that they need to use

With jottings

343 - 170 (by counting up from 170, bridging the hundreds boundary; $+30,+100,+43$)

Adjusting:

234-99 (by subtracting 100 and adding 1)
With Jottings:
387 - 59 (by subtracting 60 and adding 1)

Using Known Facts And Place Value:

268-5
$8-5=3$ so $268-5=263$

Estimating

Estimate the answer to a calculation
163-48 is approximately 150-50

Use inverse operations to check answers check $102-97=5$ with $97+5=102$

Use equivalent calculations to check answers

ABSTRACT

$$
47-24=
$$

407
$\begin{array}{r}-20 \quad 4 \\ \hline-204\end{array}$
203

Subtraction with exchanging

CONCRETE

Exchange one of the 10s for ten 1 s

After subtracting the ones, exchange one of the 100s for ten 10 s

234
\square

Now calculation can be completed.
the inverse - this is more pronounced when subtracting.

- Pupils struggle to add and subtract from right to left in columns and hence may end up with answers that are not partitioned into hundreds, tens and ones.
- Pupils may place the smallest number at the top of the calculation when using column subtraction method.
- When numbers exchanges happen, pupils may forget to notate them and hence not include the extra/fewer tens, hundreds etc. in the new calculations.
- The equals sign is not always correctly interpreted as 'has the same value as' by pupils who may see it as 'the answer is'.

PICTORIAL

ABSTRACT

Expanded Method		Compact Method
H	T 0	
200	${ }^{30} 40{ }^{17}$	$2^{3} 47$
- 100	209	- 129
100	$10 \quad 8=118$	118

SUBTRACTION: Y4

Generalisations

Investigate when re-ordering works as a strategy for subtraction. eg. 20-3-10=20-10-3, but 3-20-10 would give a different answer.

Misconceptions

- Pupils struggle to interpret whether to add or subtract from the language used
- When subtracting, pupils will sometimes subtract the larger number from the smaller initially.
- When performing columnar subtraction, pupils may exchange from the wrong column or fail to exchange altogether (instead just finding the difference between the digits in the column, even where the second one is greater than the first).
- Pupils may also fail to correctly record the exchange and thus not reduce the tens, for example, by one so that the answer is 10 too high.
- Pupils find calculations where multiple exchanges must be made particularly hard e.g. 2304-1789 cause issues because of the need to carry out a chain reaction of exchange. In these instances you may need to resort back to equipment to secure understanding.
- Pupils often do not see difference as a representation of subtraction because take away is emphasised so much. They need to see subtraction represented in this way also to challenge this.
- Some pupils may use the incorrect operation when checking and fail to realise that they need to use the inverse - this is more pronounced when subtracting.

$1000-600=400$ so $7000-600=6400$

Estimating:

Estimate the answer to a calculation
3062-2581 is approximately 3000-2500
Use inverse operations to check answers check $564-150=414$ with $414+150=564$

Use equivalent calculations to check answers

Pupils will subtract decimals to 2 decimal places (in the context of money or measures)

$$
£ 64.81-£ 25.62=
$$

$\mathbf{£ 1 0}$	$\mathbf{£ 1}$.	$\mathbf{1 0} \mathbf{p}$	$\mathbf{1 p}$
${ }^{5} 6$	${ }^{1} 4$.	${ }^{7} / 8$	${ }^{1} 1$
-	2	5	.	6
$£$	3	9	.	1

SUBTRACTION: Y5

SUBTRACTION: Y5		
Understanding the operation and vocabulary	Number Sense and Fluency	Recording
Understanding the operation	Number facts	https://www.ncetm.org.uk/resources/50640
Continue to solve missing number problems	Continue to use knowledge of subtraction facts and place value to derive related facts with numbers to one decimal place	
$6.5-\square=2.3 \quad \square=3-0.8 \quad \square-\square=1.2$		Pupils may still need the support of practical apparatus or use the expanded method initially.
$\begin{aligned} & 5.4+2.7=10.3-\square \quad 5.2<\square-0.9 \quad \square-\square>7.2- \\ & 1.9 \end{aligned}$	1.2 subtract $0.7,1.8$ minus 0.9 , the difference between 2 and 1.3, 0.3 fewer than 1.7	Once confident using the compact method showing an understanding of the value of each digit, this method can be used for decimals too.
Begin to use brackets	Know complements to 1	
$(10-3) \times 6=\square \quad 10-(0.5 \times 7)=\square$	$0.78+\square=1 \quad 0.52+\square=1$	75.4-8.6
Use inverse operations and brackets I am thinking of a number. I double it and then subtract 6. My answer is 8 . What was my number? $x 2-6=8$ so $(8+6) \div 2=$ \square	Recall pairs of three-digit numbers with a total of 1000 and derive related subtraction facts 1000-453, 1000-239, 1000-712 ...	
		$60 \quad 14 \quad 1$.
		\$ \$ 0.4
		- 80.6
	Subtract numbers mentally with increasingly large numbers	$6060.8=66.8$
Vocabulary		$6060.8=66.8$
Understand, read and spell vocabulary related to subtraction. Also see previous years		6141
Also see previous years	Subtract tenths, and one-digit whole numbers and tenths	$\text { ₹ S. } 4$
$17-9$ - 8		- 8.6
minuend - subtrahend = difference	Counting Back (sequencing):	66.8
tens of thousands boundary,	4.7 - 1.5 (by partitioning the second number and counting back; $-1,-0.5$)	
Generalisation	With jottings:	
Sometimes, always or never true?	19.2-2.7 (by partitioning the second number and counting back; $-2,-0.2,-0.5$)	
The difference between a number and its reverse will be a multiple of 9 .		
What do you notice about the differences between	Counting up:	
consecutive square numbers?	7.2-6.8 (by counting up from 6.8 by bridging the units boundary; $+0.2,+0.2$)	
Misconceptions		
- Pupils struggle to interpret whether to add or subtract from the language used. - Pupils can find 'How many more/less?' particularly	With jottings: 8.3 - 4.8 (by counting up from 4.8 by bridging the units boundary; +0.2, +3.3)	
troublesome as it relates to ordinal values of numbers and relationships.	Adjusting:	

- When subtracting, pupils will sometimes subtract the larger number from the smaller initially.
- When performing columnar subtraction, pupils may exchange from the wrong column or fail to exchange altogether (instead just finding the difference between the digits in the column, even where the second one is greater than the first).
- Pupils may also fail to correctly record the exchange and thus not reduce the tens, for example, by one so that the answer is 10 too high.
- Pupils often do not see difference as a representation of subtraction because take away is emphasised so much. They need to see subtraction represented in this way also to challenge this.
$8.3-1.9$ (by subtracting 2 and adding 0.1)
With jottings:
12.6-3.9 (by subtracting 4 and adding 0.1)

Using known facts and place value:

15-0.3
$1-0.3=0.7$ so $15-0.3=14.7$

Estimating

Use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy
$25034-7185$ is approximately $25000-7000$
Continue to use appropriate strategies to check answers check $4.7-1.5=3.2$ with $3.2+1.5$

SUBTRACTION: Y6

Misconceptions

- When subtracting pupils may subtract the larger number from the smaller initially.
- When performing columnar subtraction pupils may exchange the wrong column or fail to exchange altogether.
- When adding and subtracting numbers of different magnitude (including decimals of different lengths), pupils often misalign these in column addition and subtraction

Using Known Facts And Place Value:

1.63-0.8

$16-8=8$ so $1.63-0.8=0.83$

Estimating:

Use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.
$60.31-17.884$ is approximately $60-18$
Continue to use appropriate strategies to check answers check $6.7-0.55=6.15$ with $6.15+0.55$

