
7 cm

Area and Perimeter of Rectangles

Perimeter =

2 x (length + width)

$$P = 2 x (L + W)$$

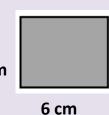
$$P = 2 \times (8 + 4) = 24 \text{cm}$$

Shapes with the areas can have different perimeters

9 cm 2 cm

3 cm

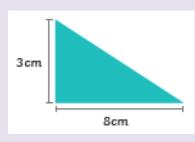
6 cm

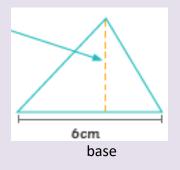

Area= 18cm²

Area = length x width

$$A = L \times W$$

$$A = 8 \times 4 = 32 \text{cm}^2$$

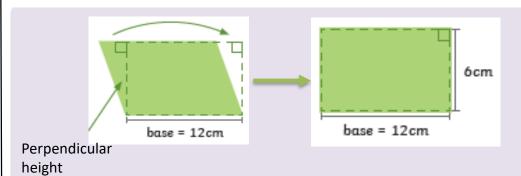

Shapes with the same perimeter can have different areas


Perimeter = 20cm

3 cm

Area of Triangles

Perpendicular height



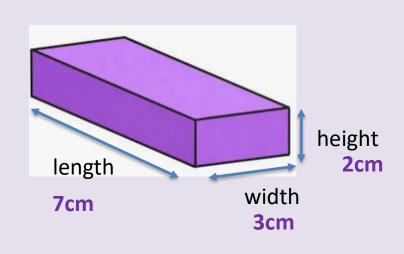
Area = base x perpendicular height ÷ 2

$$A = (b \times h) \div 2$$

$$A = (8 \times 3) \div 2 = 12 \text{cm}^2$$

Area of Parallelograms

Area = base x perpendicular height


$$A = (b \times h)$$

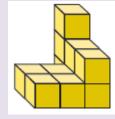
$$A = 12 \times 6 = 72 \text{cm}^2$$

ONHEART

Volume of Cuboids

Vocabulary

Volume = length x width x height


 $V = L \times W \times H$

 $V = 7 \times 3 \times 2 = 42 \text{cm}^3$

Volume is recorded as cubed - cm³

1cm³

11 cm³

perimeter	The distance around a 2D shape
area	The amount of space inside a 2D shape
volume	The amount of 3D solid space that is taken up
capacity	The amount of liquid that a container can hold
cubic unit	Used when measuring volume or capacity eg cm³ m³
perpendicular height	The height of a shape measured at a right angle from the base
formula	A rule written with mathematical symbols
	The formula for the area of a rectangle is A = L x W
	A – area L – length W - width